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Motivation: a Personal but Common Experience

 I develop production-quality distributed systems at IBM, including
► Peer-to-Peer Middleware in WebSphere product
► Cluster performance management in Tivoli product
► Cloud stuff most recently

 I constantly feel the pain of low productivity due to 
► The difficulty of testing and debugging distributed algorithms
► The lack of readily-reusable implementations of common distributed algorithms

 After several years of struggling, I finally decided to build a framework 
called DSF to help myself and hopefully also help others
► Many people have gone down the same path before, but hopefully I can make 

a difference this time, for good reasons



3

IBM Research

IBM Research 3

Distributed Systems Foundation (DSF)

 DSF is a framework for distributed systems research and 
development, much like what ns-2 does for networking research
► But unlike ns-2, DSF is for building production-quality distributed 

systems rather than just for simulation

 DSF provides 
► a framework to implement distributed algorithms so that different 

research results can be compared
► a set of advanced testing and debugging features to significantly 

improve development productivity
► highly-reusable implementations of commonly used distributed 

algorithms to save repeated development efforts
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Overview of DSF

 The DSF APIs provide a programming environment that isolates platform-
dependent details

 It improves portability, e.g., different security frameworks can be used without 
changing the user code

 It also allows a distributed algorithm to run in different execution modes
► Simulation
► Real deployment
► Massive multi-tenancy

Simulation

Java Virtual Machine

DSF APIs
[ TCP, thread, time, random number, file access ]

Paxos DHT Publish/Subscribe Gossip...Membership

      ...
J2SE

Wrapper
J2ME

Wrapper
J2SE + CFW

Wrapper
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Why DSF is Different?
 My goal is to trigger and fix 99% of the bugs (including elusive race 

condition bugs) while testing all “distributed” components (e.g., 1000 DHT 
nodes) inside a single JVM 
► My development productivity drops by more than 50% when moving from 1 JVM to just 2 

JVMs, not to mention 1000 JVMs
► It is difficult to chase bugs across servers due to scattered states

 Simulation is widely used, but existing simulation frameworks cannot 
trigger many bugs that happen in reality
► From WiDS: “the sequence of events differ in unexpected ways, making it difficult to 

discover those bugs in the simulation environment”

 DSF provides novel features in simulation to make it much more powerful
► Chaotic timing test, time travel debugging and mutable replay, fault injection, etc.

 DSF provides the massive multi-tenancy mode
► Uses thousands of OS kernel threads to actually run thousands of distributed 

components (e.g., 1000 DHT nodes) in a single JVM
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Chaotic Timing Test in Simulation

 Many elusive race condition bugs are caused by unexpected event timing

 It is hard to trigger those bugs even in the real deployment mode
► They occur rarely but can corrupt everything if they happen

 DSF systematically randomizes all event timings in the simulation mode
► Server failure, thread scheduling, network delay, message processing, etc.
► E.g., if the user code says, “run timer job A 5 seconds later; run timer job B 6 

seconds later”, DSF sometimes will intentionally run them out of order, just 
like what may happen in real systems

 How about coverage?
► DSF does not try to understand the user code in order to generate event 

sequences that have 100% coverage
► The hope is that long-running randomized tests will give good coverage
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Time Travel Debugging and Mutable Replay 
in Simulation (1/3)

 You may have this experience
► Suppose a long-running randomized test takes a whole week to 

trigger a bug caused by a rare race condition
► Now you know the bug but you have no sufficient printouts to 

understand the bug
► Following the most popular practice, you add more debugging code 

(e.g., printf and assert), recompile the program, and run it again
► The bug may show up one week later and this time you have sufficient 

printouts --- lucky you, despite of the anxiety of one week waiting
► If you are not lucky, the bug may not even show up in one month

 uhm…I will just live with it and hope it won’t happen in production systems
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Time Travel Debugging and Mutable Replay 
in Simulation (2/3)

 But I hope to offer this new experience
► Suppose a long-running randomized test takes a whole week to trigger a bug 

caused by a rare race condition
► You add more debugging code and recompile the program
► You time travel back to just 1 minute before the bug happens, but then run the 

modified program instead of the original program
► Within 1 minute, the bug precisely repeats itself as in the original run, but the 

new debugging code prints out everything you want to see
► You fix the bug in 5 minutes and spend the rest of the week on vacation

 With prior work, deterministic replay is possible, e.g., by using a 
customized OS or hypervisor, but you cannot add any debugging code 

 I want to offer deterministic but mutable replay
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Time Travel Debugging and Mutable Replay 
in Simulation (3/3)

 How it is implemented
► DSF makes periodical checkpoints, by serializing the objects that represent 

the distributed algorithm and saving them in a checkpoint file
► At any time, you may add more debugging code, recompile your program, 

and then ask DSF to resume the execution from a checkpoint
► DSF de-serializes objects from the checkpoint to initialize the modified 

program, and then starts to run it
► Now the bug precisely repeats itself because all randomized timing tests in 

DSF are pseudo-random but actually deterministic
► Files accessed by the user code are also automatically saved in the 

checkpoint so that the user code sees the same contents in the resumed run

 Unlike prior work, DSF does not checkpoint the JVM process image, or 
the whole OS image, because that would preclude mutable replay
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Massive Multi-tenancy Mode

 Even with fault injection and chaotic timing test, simulation still cannot discover 
all bugs, because the simulated impl. of the DSF APIs differ from the real one

 The multi-tenancy mode and the real deployment mode use exactly the same 
implementation of the DSF APIs

 The multi-tenancy mode may use thousands of threads to run thousands of 
distributed components (e.g., 1000 DHT nodes) in one JVM
► The user code cannot tell and does not care the difference, i.e., whether the 

components run on 1000 different servers or in a single JVM
► All TCP communication still goes through the OS kernel

 The contention of thousands of threads in one JVM also makes race condition 
bugs and performance bugs more evident 

 Since the global states are available in one JVM, the multi-tenancy and 
simulation modes can use the same Java code for checking global consistency
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Massive Multi-tenancy: use 4,000 threads in one 
JVM to run 1,000 BlueDHT nodes
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Simulation is Efficient and Scalable

 For a system with 1,000 BlueDHT nodes, it takes only 8 
minutes to simulate one-hour activities in the real world
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Checkpoint is Fast and Scalable
 For a system with 1,000 BlueDHT nodes, it takes 1.3 seconds to create 

a checkpoint, and the checkpoint size is only 13 MB 
► This efficiency is because DSF do not checkpoint the JVM process image
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Using DSF to Find Bug

 One real experience: a bug caused by out-of-order processing of a node’s 
departure and re-join events
► In an overlay network, suppose a node X fails and then reboots quickly
► X’s neighbor Y will process two events: X-fail and X-rejoin
► However, due to network and thread scheduling delay, Y may process X-rejoin first 

and then X-fail. Therefore, Y considers X not a neighbor.
► But X considers Y a neighbor because its rejoin protocol finishes successfully

 It is hard to trigger this bug in the real deployment mode, because X-fail and X-
rejoin are rarely processed out of order
► It is rare but can happen, e.g., due to long delay caused by Java garbage collection

 How DSF helped
► Chaotic timing test in the simulation mode triggered the bug
► Global consistency checking captured the bug automatically
► Time travel debugging and mutable replay allows me to understand the bug instantly
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The DSF API is almost as simple as java.util.TreeMap
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Conclusion and Status

 The goal is to trigger and fix 99% of the bugs in a single JVM
► Chaotic timing test and mutable replay are powerful tools
► Massive multi-tenancy mode can use thousands of threads to actually 

execute thousands of nodes in a single JVM

 DSF is simple. It is written purely in Java and does not modify or depend 
on any external tools.

 DSF was released in IBM recently, and some other IBM researchers just 
started to implement and evaluate their algorithms in it

 I would like to encourage broad reuse to the extent possible, and will 
see how far it can go
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