
IBM Research

IBM Research

DSF: A Common Platform For Distributed
Systems Research and Development

Chunqiang (CQ) Tang

IBM Research
December 4, 2009

2

IBM Research

IBM Research 2

Motivation: a Personal but Common Experience

 I develop production-quality distributed systems at IBM, including
► Peer-to-Peer Middleware in WebSphere product
► Cluster performance management in Tivoli product
► Cloud stuff most recently

 I constantly feel the pain of low productivity due to
► The difficulty of testing and debugging distributed algorithms
► The lack of readily-reusable implementations of common distributed algorithms

 After several years of struggling, I finally decided to build a framework
called DSF to help myself and hopefully also help others
► Many people have gone down the same path before, but hopefully I can make

a difference this time, for good reasons

3

IBM Research

IBM Research 3

Distributed Systems Foundation (DSF)

 DSF is a framework for distributed systems research and
development, much like what ns-2 does for networking research
► But unlike ns-2, DSF is for building production-quality distributed

systems rather than just for simulation

 DSF provides
► a framework to implement distributed algorithms so that different

research results can be compared
► a set of advanced testing and debugging features to significantly

improve development productivity
► highly-reusable implementations of commonly used distributed

algorithms to save repeated development efforts

4

IBM Research

IBM Research 4

Overview of DSF

 The DSF APIs provide a programming environment that isolates platform-
dependent details

 It improves portability, e.g., different security frameworks can be used without
changing the user code

 It also allows a distributed algorithm to run in different execution modes
► Simulation
► Real deployment
► Massive multi-tenancy

Simulation

Java Virtual Machine

DSF APIs
[TCP, thread, time, random number, file access]

Paxos DHT Publish/Subscribe Gossip...Membership

 ...
J2SE

Wrapper
J2ME

Wrapper
J2SE + CFW

Wrapper

5

IBM Research

IBM Research 5

Why DSF is Different?
 My goal is to trigger and fix 99% of the bugs (including elusive race

condition bugs) while testing all “distributed” components (e.g., 1000 DHT
nodes) inside a single JVM
► My development productivity drops by more than 50% when moving from 1 JVM to just 2

JVMs, not to mention 1000 JVMs
► It is difficult to chase bugs across servers due to scattered states

 Simulation is widely used, but existing simulation frameworks cannot
trigger many bugs that happen in reality
► From WiDS: “the sequence of events differ in unexpected ways, making it difficult to

discover those bugs in the simulation environment”

 DSF provides novel features in simulation to make it much more powerful
► Chaotic timing test, time travel debugging and mutable replay, fault injection, etc.

 DSF provides the massive multi-tenancy mode
► Uses thousands of OS kernel threads to actually run thousands of distributed

components (e.g., 1000 DHT nodes) in a single JVM

6

IBM Research

IBM Research 6

Chaotic Timing Test in Simulation

 Many elusive race condition bugs are caused by unexpected event timing

 It is hard to trigger those bugs even in the real deployment mode
► They occur rarely but can corrupt everything if they happen

 DSF systematically randomizes all event timings in the simulation mode
► Server failure, thread scheduling, network delay, message processing, etc.
► E.g., if the user code says, “run timer job A 5 seconds later; run timer job B 6

seconds later”, DSF sometimes will intentionally run them out of order, just
like what may happen in real systems

 How about coverage?
► DSF does not try to understand the user code in order to generate event

sequences that have 100% coverage
► The hope is that long-running randomized tests will give good coverage

7

IBM Research

IBM Research 7

Time Travel Debugging and Mutable Replay
in Simulation (1/3)

 You may have this experience
► Suppose a long-running randomized test takes a whole week to

trigger a bug caused by a rare race condition
► Now you know the bug but you have no sufficient printouts to

understand the bug
► Following the most popular practice, you add more debugging code

(e.g., printf and assert), recompile the program, and run it again
► The bug may show up one week later and this time you have sufficient

printouts --- lucky you, despite of the anxiety of one week waiting
► If you are not lucky, the bug may not even show up in one month

 uhm…I will just live with it and hope it won’t happen in production systems

8

IBM Research

IBM Research 8

Time Travel Debugging and Mutable Replay
in Simulation (2/3)

 But I hope to offer this new experience
► Suppose a long-running randomized test takes a whole week to trigger a bug

caused by a rare race condition
► You add more debugging code and recompile the program
► You time travel back to just 1 minute before the bug happens, but then run the

modified program instead of the original program
► Within 1 minute, the bug precisely repeats itself as in the original run, but the

new debugging code prints out everything you want to see
► You fix the bug in 5 minutes and spend the rest of the week on vacation

 With prior work, deterministic replay is possible, e.g., by using a
customized OS or hypervisor, but you cannot add any debugging code

 I want to offer deterministic but mutable replay

9

IBM Research

IBM Research 9

Time Travel Debugging and Mutable Replay
in Simulation (3/3)

 How it is implemented
► DSF makes periodical checkpoints, by serializing the objects that represent

the distributed algorithm and saving them in a checkpoint file
► At any time, you may add more debugging code, recompile your program,

and then ask DSF to resume the execution from a checkpoint
► DSF de-serializes objects from the checkpoint to initialize the modified

program, and then starts to run it
► Now the bug precisely repeats itself because all randomized timing tests in

DSF are pseudo-random but actually deterministic
► Files accessed by the user code are also automatically saved in the

checkpoint so that the user code sees the same contents in the resumed run

 Unlike prior work, DSF does not checkpoint the JVM process image, or
the whole OS image, because that would preclude mutable replay

10

IBM Research

IBM Research 10

Massive Multi-tenancy Mode

 Even with fault injection and chaotic timing test, simulation still cannot discover
all bugs, because the simulated impl. of the DSF APIs differ from the real one

 The multi-tenancy mode and the real deployment mode use exactly the same
implementation of the DSF APIs

 The multi-tenancy mode may use thousands of threads to run thousands of
distributed components (e.g., 1000 DHT nodes) in one JVM
► The user code cannot tell and does not care the difference, i.e., whether the

components run on 1000 different servers or in a single JVM
► All TCP communication still goes through the OS kernel

 The contention of thousands of threads in one JVM also makes race condition
bugs and performance bugs more evident

 Since the global states are available in one JVM, the multi-tenancy and
simulation modes can use the same Java code for checking global consistency

11

IBM Research

IBM Research 11

Massive Multi-tenancy: use 4,000 threads in one
JVM to run 1,000 BlueDHT nodes

12

IBM Research

IBM Research 12

Simulation is Efficient and Scalable

 For a system with 1,000 BlueDHT nodes, it takes only 8
minutes to simulate one-hour activities in the real world

13

IBM Research

IBM Research 13

Checkpoint is Fast and Scalable
 For a system with 1,000 BlueDHT nodes, it takes 1.3 seconds to create

a checkpoint, and the checkpoint size is only 13 MB
► This efficiency is because DSF do not checkpoint the JVM process image

14

IBM Research

IBM Research 14

Using DSF to Find Bug

 One real experience: a bug caused by out-of-order processing of a node’s
departure and re-join events
► In an overlay network, suppose a node X fails and then reboots quickly
► X’s neighbor Y will process two events: X-fail and X-rejoin
► However, due to network and thread scheduling delay, Y may process X-rejoin first

and then X-fail. Therefore, Y considers X not a neighbor.
► But X considers Y a neighbor because its rejoin protocol finishes successfully

 It is hard to trigger this bug in the real deployment mode, because X-fail and X-
rejoin are rarely processed out of order
► It is rare but can happen, e.g., due to long delay caused by Java garbage collection

 How DSF helped
► Chaotic timing test in the simulation mode triggered the bug
► Global consistency checking captured the bug automatically
► Time travel debugging and mutable replay allows me to understand the bug instantly

15

IBM Research

IBM Research 15

The DSF API is almost as simple as java.util.TreeMap

16

IBM Research

IBM Research 16

Conclusion and Status

 The goal is to trigger and fix 99% of the bugs in a single JVM
► Chaotic timing test and mutable replay are powerful tools
► Massive multi-tenancy mode can use thousands of threads to actually

execute thousands of nodes in a single JVM

 DSF is simple. It is written purely in Java and does not modify or depend
on any external tools.

 DSF was released in IBM recently, and some other IBM researchers just
started to implement and evaluate their algorithms in it

 I would like to encourage broad reuse to the extent possible, and will
see how far it can go

	DSF: A Common Platform For Distributed�Systems Research and Development
	Motivation: a Personal but Common Experience
	Distributed Systems Foundation (DSF)
	Overview of DSF
	Why DSF is Different?
	Chaotic Timing Test in Simulation
	Time Travel Debugging and Mutable Replay �in Simulation (1/3)
	Time Travel Debugging and Mutable Replay �in Simulation (2/3)
	Time Travel Debugging and Mutable Replay �in Simulation (3/3)
	Massive Multi-tenancy Mode	
	Massive Multi-tenancy: use 4,000 threads in one JVM to run 1,000 BlueDHT nodes
	Simulation is Efficient and Scalable
	Checkpoint is Fast and Scalable
	Using DSF to Find Bug
	Slide Number 15
	Conclusion and Status

