
Heterogeneous Gossip

Davide Frey
Rachid Guerraoui

Anne-Marie Kermarrec
Boris Koldehofe

Maxime Monod
Martin Mogensen

Vivien Quéma



Outline

• Context
– Live Streaming
– Gossip
– Limitations

• Heterogeneous Gossip
– Protocol
– Evaluation
– Conclusion



Context

• Large-scale (no IP-multicast)
• Churn/Failures
• Constrained, asymmetric and heterogeneous 

bandwidth

Target application: Live streaming



Live Streaming

t0 t1 t2 t3

Play the stream at t0+ε
Minimize ε (stream lag) 

Play the stream at tr+δ
Minimize δ (buffering delay)Maximize stream quality

?

Sent at ts
Received at tr



Existing approaches

Unstructured overlayStructured overlay

Static overlay / Reactive repair

DHT-based systems
Trees
Multiple trees

Dynamic overlay / Proactive repair

GossipMesh-based systems

Trees over mesh



Existing approaches

Unstructured overlayStructured overlay

Static overlay / Reactive repair
SplitStream (2003)
Chunkyspread (2006)

Dynamic overlay / Proactive repair

Gossip
Coolstreaming (2005)
Chainsaw (2005)
PULSE (2007)
PRIME (2007)

Coolstreaming (2007)
GridMedia (2007)

BAR Gossip/FlightPath (2006/2008)

Heterogeneity awareness?



Gossip in the real world

George meets Bob:



Infect-and-die model

Gossip in computer science

p0 p1 p3 p4 pf…p2

fanout partners

go
ss

ip
 p

er
io

d



Gossip - Theory

1. fanout = ln(n) + c
P[connected graph] goes to exp(-exp(-c))

2. Holds as long as the fanout is ln(n) + c on average

0

0.2

0.4

0.6

0.8

1

ln(n)-10 ln(n)-5 ln(n) ln(n)+5 ln(n)+10

c=1 → 69%

c=2 → 87% c=3 → 95%

c=-1 → 7%

c=0 → 37%



0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

DF
)

Percentage of nodes receiving at least 99% of the stream

Gossip – Practice (600kbps)

PlanetLab nodes have:
• Large bandwidths
• Small delays

Stream lag (s)



Gossip is load-balancing…

– Proposals arrive randomly
• Nodes pull from the first proposal

– Highly-dynamic

S

p1

q

p2

p3

S q
S

q

Node q will serve f nodes whp Node q will serve f nodes wlp



… but the world is heterogeneous!

Load-balancing

Capability

3 classes (691kbps avg):

512kbps
85%

3Mbps
5%

1Mbps
10%

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

DF
)

Percentage of nodes receiving at 
least 99% of the stream



vs

How to cope with heterogeneity?

• Goal: contribute according to capability

• Advertize more = sell more:
– Propose more = serve more

• Increase fanout…
… and decrease it too!

• Challenges:
– Preserve reliability of gossip

average fanout (favg) ≥ initial fanout = ln(n) + c
– Cope with dynamic capabilities



Heterogeneous Gossip - HEAP

• q and r with bandwidths bq > br
– q should upload bq / br times as much as r

• Who should increase/decrease its contribution?
… and by how much?

• How to ensure reliability?
– How to keep favg constant?

Capability



HEAP

• Total/average contribution is equal in both 
homogeneous and heterogeneous settings

fq = finit ∙ bq /bavg

…ensuring the average fanout is constant and 
equal to finit = ln(n) + c

bavg

Capability



HEAP

• Get bavg with (gossip) aggregation
– Advertize own and freshest received capabilities
– Aggregation follows change in the capabilities

• Get n with (gossip) size estimation
– Estimation follows change in the system

• Join/leave
• Crashes
• …



Stream Lag reduction

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

DF
)

Percentage of nodes receiving at least 99% of the stream

Stream lag (s)

Standard gossip – 691kbps

HEAP – 691kbps

No cap



Experimental Setup

• 270 PlanetLab nodes
• Network capabilities

– Bandwidth cap by throttling
– Communication with UDP

• Stream rate of 600kbps
– Windows of 110 events, including 9 FEC events

• Gossip
– period of 200 ms
– favg = 7 (ln(270) = 5.60)



Evaluation Metrics

• Stream Lag
– Time difference between creation at the source 

and delivery to the player

• Stream Quality
– A window is considered jittered if < 101 events
– Stream with maximum of 1% jitter means at least 

99% of the windows are complete
• Incomplete does not mean “blank”!



Quality improvement

• Stream lag of 10s

0

10

20

30

40

50

60

70

80

90

100

Standard Gossip HEAP

Jitter-free percentage of the stream

512kbps
1Mbps
3Mbps



Stream Lag

• For those who can have a jitter-free stream

0

5

10

15

20

25

30

35

40

45

Standard Gossip HEAP

Average stream lag to obtain a jitter-free stream

512kbps

1Mbps

3Mbps

St
re

am
 la

g 
(s

)



0

512

1024

1536

2048

2560

3072

Standard Gossip HEAP

Average bandwidth usage by bandwidth class

512kbps

1Mbps

3Mbps

Proportional contribution

99
.8

9%

91
.5

6% 48
.4

4%

94
.3

8%

90
.5

8%

87
.5

6%



20% nodes crashing

0

20

40

60

80

100

0 30 60 90 120 150

Pe
rc

en
ta

ge
 o

f n
od

es
 re

ce
iv

in
g 

ea
ch

 w
in

do
w

Failure of 20% of the nodes at time t=60s

HEAP - 12s lag
Standard Gossip - 20s lag
Standard Gossip - 30s lag

Stream time (s)



Conclusion

• Limitations
– UDP usage

• TCP-unfriendliness
• Incoming traffic

– Probability of acceptance also depends on latency

• Future work
– Compare with mesh systems
– Freeriders
– Biasing partner selection


	Heterogeneous Gossip
	Outline
	Context
	Live Streaming
	Existing approaches
	Existing approaches
	Gossip in the real world
	Gossip in computer science
	Gossip - Theory
	Gossip – Practice 			(600kbps)
	Gossip is load-balancing…
	… but the world is heterogeneous!
	How to cope with heterogeneity?
	Heterogeneous Gossip - HEAP
	HEAP
	HEAP
	Stream Lag reduction
	Experimental Setup
	Evaluation Metrics
	Quality improvement
	Stream Lag
	Proportional contribution
	20% nodes crashing
	Conclusion

