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Context

• Large-scale (no IP-multicast)
• Churn/Failures
• Constrained, asymmetric and heterogeneous 

bandwidth

Target application: Live streaming



Live Streaming

t0 t1 t2 t3

Play the stream at t0+ε
Minimize ε (stream lag) 

Play the stream at tr+δ
Minimize δ (buffering delay)Maximize stream quality

?

Sent at ts
Received at tr



Existing approaches

Unstructured overlayStructured overlay

Static overlay / Reactive repair

DHT-based systems
Trees
Multiple trees

Dynamic overlay / Proactive repair

GossipMesh-based systems

Trees over mesh



Existing approaches

Unstructured overlayStructured overlay

Static overlay / Reactive repair
SplitStream (2003)
Chunkyspread (2006)

Dynamic overlay / Proactive repair

Gossip
Coolstreaming (2005)
Chainsaw (2005)
PULSE (2007)
PRIME (2007)

Coolstreaming (2007)
GridMedia (2007)

BAR Gossip/FlightPath (2006/2008)

Heterogeneity awareness?



Gossip in the real world

George meets Bob:



Infect-and-die model

Gossip in computer science
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Gossip - Theory

1. fanout = ln(n) + c
P[connected graph] goes to exp(-exp(-c))

2. Holds as long as the fanout is ln(n) + c on average
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Gossip – Practice (600kbps)

PlanetLab nodes have:
• Large bandwidths
• Small delays

Stream lag (s)



Gossip is load-balancing…

– Proposals arrive randomly
• Nodes pull from the first proposal

– Highly-dynamic
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Node q will serve f nodes whp Node q will serve f nodes wlp



… but the world is heterogeneous!

Load-balancing

Capability

3 classes (691kbps avg):

512kbps
85%

3Mbps
5%

1Mbps
10%
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vs

How to cope with heterogeneity?

• Goal: contribute according to capability

• Advertize more = sell more:
– Propose more = serve more

• Increase fanout…
… and decrease it too!

• Challenges:
– Preserve reliability of gossip

average fanout (favg) ≥ initial fanout = ln(n) + c
– Cope with dynamic capabilities



Heterogeneous Gossip - HEAP

• q and r with bandwidths bq > br
– q should upload bq / br times as much as r

• Who should increase/decrease its contribution?
… and by how much?

• How to ensure reliability?
– How to keep favg constant?

Capability



HEAP

• Total/average contribution is equal in both 
homogeneous and heterogeneous settings

fq = finit ∙ bq /bavg

…ensuring the average fanout is constant and 
equal to finit = ln(n) + c

bavg

Capability



HEAP

• Get bavg with (gossip) aggregation
– Advertize own and freshest received capabilities
– Aggregation follows change in the capabilities

• Get n with (gossip) size estimation
– Estimation follows change in the system

• Join/leave
• Crashes
• …



Stream Lag reduction
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Experimental Setup

• 270 PlanetLab nodes
• Network capabilities

– Bandwidth cap by throttling
– Communication with UDP

• Stream rate of 600kbps
– Windows of 110 events, including 9 FEC events

• Gossip
– period of 200 ms
– favg = 7 (ln(270) = 5.60)



Evaluation Metrics

• Stream Lag
– Time difference between creation at the source 

and delivery to the player

• Stream Quality
– A window is considered jittered if < 101 events
– Stream with maximum of 1% jitter means at least 

99% of the windows are complete
• Incomplete does not mean “blank”!



Quality improvement

• Stream lag of 10s
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Stream Lag

• For those who can have a jitter-free stream
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20% nodes crashing
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Conclusion

• Limitations
– UDP usage

• TCP-unfriendliness
• Incoming traffic

– Probability of acceptance also depends on latency

• Future work
– Compare with mesh systems
– Freeriders
– Biasing partner selection
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